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Abstract. This paper deals with the mechanics and control for multi-particle systems from a
geometric point of view. The centre-of-mass system is viewed as a principal fibre bundle with
structure groupSO(3), the base space of which is called the internal or shape space. A natural
connection and a natural Riemannian metric are both defined on the centre-of-mass system.
The equations of motion for the multi-particle system are derived in the Lagrangian formalism
adapted to the bundle structure, and then reduced with the conserved total angular momentum.
In contrast with this, the control problem is studied with non-holonomic constraints, i.e. with
the vanishing total angular momentum, and equations of motion are determined for an optimally
controlled multi-particle system. The resultant equations derived in each of the mechanical and
control systems are to be compared.

1. Introduction

A geometric way to the mechanics for multi-particle systems is to treat the centre-of-mass
system as a principal fibre bundle. It was Guichardet (1984) who first defined rotational
and vibrational vectors strictly, and thereby showed that rotations cannot be separated from
vibrations on the basis of the connection theory applied for the centre-of-mass system as a
principal fibre bundle. The author (1987a) set up Hamiltonian formalism for multi-particle
systems, in a rather abstract way, also on the basis of the connection theory. In this
paper, however, the equations of motion are derived in Lagrangian formalism in terms of
local coordinates, and reduced along with the conserved total angular momentum. As for
multi-particle systems, Montgomery (1990, 1991) treated the falling Cat problem, a control
problem with non-holonomic constraints, from the viewpoint of a bundle picture, i.e. from
the gauge theoretical point of view. Recently, Littlejohn and Reinsch (1997) studied multi-
particle systems also from the bundle picture viewpoint. This paper also deals with the
falling Cat problem in order to compare its equations of motion with those for the reduced
equations of motion for the mechanical system.

The paper is organized as follows: section 2 contains the setting up of the centre-of-mass
system as a principalSO(3) bundle, on which a natural connection and a natural metric are
defined, and thereby rotational and vibrational vectors are defined strictly. Miscellaneous
related formulae will also be given. In section 3, the equations of motion for the multi-
particle system are derived in the Lagrangian formalism, and then reduced by the use of
the conserved total angular momentum. The reduced equations consist of two sets; one is
mainly concerned with angular variables, and the other with internal coordinates. Section 4
deals with an optimal control problem for the multi-particle system, in which the multi-
particle system is operated so that the vibrational energy of the system is minimized with
the constraint of the vanishing total angular momentum. The equations of motion to which
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the optimally controlled multi-particle system is subject is determined on the maximum
principle. The resultant equations are compared with those obtained in section 3. Section 5
contains remarks on the Lagrangian and Hamiltonian formalisms adapted to the bundle
structure.

2. Geometry of the centre-of-mass system

Let X0 be the space of all the ennuplesx = (x1, . . . , xN) of particle position vectors
xα ∈ R3, each particle having massmα, α = 1, . . . , N . As is well known, the translational
degrees of freedom are removed fromX0 to give rise to the centre-of-mass system

X =
{
x = (x1, . . . , xN)

∣∣∣∣ N∑
α=1

mαxα = 0

}
. (2.1)

The rotation groupSO(3) acts onX in a natural manner

8g : x 7→ gx := (gx1, . . . , gxN) g ∈ SO(3), x ∈ X. (2.2)

We assume here that the configurations ofN particles are not rectilinear, i.e. we restrictX
to the subset at each point of which

Fx = span{x1, x2, . . . , xN } (2.3)

is of dimension greater than or equal to two; dimFx > 2. Let

Ẋ = {x ∈ X| dimFx > 2} (2.4)

then the compact groupSO(3) acts freely onẊ, so that the quotient spacėX/SO(3)
becomes a manifold (see Abraham and Marsden (1978)). ThusẊ is made into a principal
fibre bundle (see Cushman and Bates (1997), for example)

π : Ẋ −→ M := Ẋ/SO(3). (2.5)

The base spaceM is referred to as the internal space or shape space, the dimension of
which is, of course,n := 3N − 6, since dimẊ = 3N − 3. LetU be an open subset ofM.
Then the local triviality,π−1(U) ∼= U × SO(3), of theSO(3) bundle (2.5) is expressed as

x = gσ(q) σ (q) = (σα(q)) =
( 3∑
a=1

Caα(q)ea

)
(q, g) ∈ U × SO(3) (2.6)

whereσ : U → Ẋ is a local section, andea, a = 1, 2, 3, are the standard basis ofR3.
We notice here thatσ(q) denotes a way to put the multi-particle system with the shape
determined byq ∈ U , in the spaceR3. LetV be another open subset ofM with U∩V 6= ∅.
Then one has another local sectionτ : V → Ẋ such that

x = hτ(q) (q, h) ∈ V × SO(3). (2.7)

The local sectionsσ andτ are then related, onU ∩ V , by

τ = kσ k = h−1g (2.8)

wherek = k(q) andq ∈ U ∩V . Note also thatẊ becomes a trivial bundle for three-particle
systems (Iwai 1987b), so thatσ : U → Ẋ can be defined globally for those systems.

The centre-of-mass systeṁX is endowed with a metric ds2, which is defined, at
x = (x1, . . . , xN) ∈ X, to be

ds2 =
N∑
α=1

mα(dxα|dxα) (2.9)
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where( | ) denotes the standard inner product inR3. To define a natural connection oṅX,
we start by setting up some notations necessary for the definition. LetR : R3→ so(3) and
Ax : R3→ R3 be the vector space isomorphism and the inertia tensor, each of which are
defined to be

R(w) =
 0 −w3 w2

w3 0 −w1

−w2 w1 0

 for w = (wa) ∈ R3 (2.10)

and

Ax(w) =
N∑
α=1

mαxα × (w × xα) x ∈ Ẋ, w ∈ R3 (2.11)

respectively. We notice here thatAx is a symmetric positive-definite operator forx with
dimFx > 2, so thatA−1

x exists. For further calculations we carry out later, let us be
reminded of the fundamental properties ofR andAx

R(w)z = w × z w, z ∈ R3 (2.12)

R(gw) = gR(w)g−1 w ∈ R3, g ∈ SO(3) (2.13)

R(v) · R(w) = (v|w) v,w ∈ R3 (2.14)

Agx(w) = gAx(g−1w) =: AdgAx(w) w ∈ R3, g ∈ SO(3). (2.15)

Here equation (2.14) defines the inner product inso(3). The connection formω (see Iwai
(1987a, b)) is then defined to be

ω = R
(
A−1
x

N∑
α=1

mαxα × dxα

)
. (2.16)

On this set-up, the rotational vectors are defined to be infinitesimal generators of the
SO(3) action, which take the form

d

dt
exp(tR(w))x|t=0 = (w × x1, . . . , w × xN) (2.17a)

or in terms of differential operators

N∑
α=1

(
w × xα

∣∣∣∣ ∂∂xα
)
=
(
w

∣∣∣∣ N∑
α=1

xα × ∂

∂xα

)
= (w|J ) J =

N∑
α=1

xα × ∂

∂xα
(2.17b)

whereJ is the total angular momentum operator. A tangent vectorv = (v1, . . . , vN) to
X at x is called a vibrational vector, if it is orthogonal to any rotational vector atx with
respect to the metric (2.9). Hence,v is a vibrational (or horizontal) vector, if and only if

N∑
α=1

mαxα × vα = 0 (2.18)

which is equivalent toω(v) = 0. Moreover, we have to point out thatω satisfies, for
rotational vectors

ω

( N∑
α=1

(
w × xα

∣∣∣∣ ∂∂xα
))
= R(w) w ∈ R3 (2.19)

and is subject to the transformation

ωgx = Adgωx g ∈ SO(3) (2.20)

the proof of which can be carried out in a straightforward manner.
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We proceed now to describe the rotational and vibrational vectors in local coordinates
with respect to the local triviality (2.6). Letωa andJa be the components ofω and ofJ
with respect to the fixed frameea, respectively

ω =
3∑
a=1

R(ea)ω
a ω · R(ea) = ωa (2.21)

J =
3∑
a=1

eaJa Ja = (ea|J ). (2.22)

The formsωa and dqi constitute a local basis of the space of one-forms onẊ, a =
1, 2, 3, i = 1, 2, . . . , n = dimM. To be strict in notation, we have to useπ∗dqi , the pull-
back of dqi , for dqi , but we use dqi for notational simplicity. Furthermore, the vector fields
Ja and∂∗i := (∂/∂qi)∗, the horizontal lift of∂/∂qi defined byω(∂∗i ) = 0 andπ∗∂∗i = ∂/∂qi ,
are a local basis of the space of vector fields, whereπ∗ is the differential ofπ . Then one
has

ωa(Jb) = δab dqi(Jb) = 0

ωa(∂∗j ) = 0 dqi(∂∗j ) = δij . (2.23)

For the local expression ofωa, we write out (2.16) in the local coordinates given in (2.6).
A calculation then results in

ωa = 2a +
n∑
i=1

βai dqi (2.24)

where we have set

dgg−1 =
3∑
a=1

2aR(ea) (2.25)

βai =
(
A−1
x

N∑
α=1

mαxα × ∂xα

∂qi

∣∣∣∣ ea). (2.26)

The2a andJa are expressed in terms of Euler angles, which we need not give explicitly
here. As for the local expression of∂∗i = (∂/∂qi)∗, we obtain, from (2.23)

∂∗i =
∂

∂qi
−

3∑
a=1

βai Ja. (2.27)

Now we have to note that the transformation (2.20) to whichω is subject implies that
βai are subject to the transformation

βai (gx) =
3∑
b=1

gabβ
b
i (x) g = (gab) ∈ SO(3). (2.28)

The infinitesimal version of (2.28) withg = exp(tR(ec)) is expressed as

Jc(β
a
i ) = −

3∑
b=1

εcabβ
b
i (2.29)

where εcab is the antisymmetric symbol withε123 = 1. Moreover, from (2.15) the
components of the inertia tensor,Aab(x) := (ea|Ax(eb)), are shown to be subject to the
transformation

Aab(gx) =
∑
c,d

gacAcd(x)gbd g = (gab) ∈ SO(3). (2.30)
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The infinitesimal transformation of (2.30) forg = exptR(ec) proves to be given by

Jc(Aab) = [R(ec), A]ab =
∑
d

εcdaAdb +
∑
d

εcdbAad (2.31)

whereA = (Aab).
We now wish to express the metric ds2 in terms ofωa and dqi . From (2.17) it follows

that Jaxα = ea × xα, so that from (2.9) and (2.11), one obtains

ds2(Ja, Jb) = Aab(x). (2.32)

Further, since rotational vector fieldsJa and vibrational vector fields∂∗i are orthogonal, the
metric ds2 turns out to be expressed as

ds2 =
3∑

a,b=1

Aabω
aωb +

n∑
i,j=1

aij dqi dqj (2.33)

where

aij := ds2(∂∗i , ∂
∗
j ). (2.34)

It is to be noted that since ds2 is invariant under theSO(3) action, and since the vibrational
vector field∂∗j is in one-to-one correspondence with∂j = ∂/∂qj , a tangent vector field on
U ⊂ M, equation (2.34) defines a metric tensoraij on the internal spaceM.

We finally proceed to the curvature form, which is defined to be

� =
3∑
a=1

R(ea)�
a := dω − ω ∧ ω. (2.35)

Then a calculation provides

�c = dωc −
∑
a<b

εabcω
a ∧ ωb =

∑
i<j

F cij dqi ∧ dqj (2.36)

where

Fcij =
∂βcj

∂qi
− ∂β

c
i

∂qj
−

3∑
a,b=1

εabcβ
a
i β

b
j . (2.37)

In addition, we obtain the transformation property of the curvature form. From(2.20) and
(2.35) it follows that

�gx = Adg�x. (2.38)

Then the components�a = (F aij ) are subject to the transformation

Fcij (gx) =
3∑
a=1

gcaF
a
ij (x) g = (gab) ∈ SO(3). (2.39)

The curvature tensorFaij is also introduced in terms of vector fields; on using (2.22),
(2.27) and (2.29), the rotational vector fieldsJa and the vibrational vector fields∂∗i are
shown to satisfy the following commutation relations

[Ja, Jb] = −
3∑
c=1

εabcJc [∂∗i , ∂
∗
j ] = −

3∑
c=1

Fcij Jc [∂∗i , Ja] = 0. (2.40)

The middle equation of (2.40) means that the two independent vibrational vectors,∂∗i and
∂∗j , are coupled to give rise to an infinitesimal rotation. This fact implies that vibrations
cannot be separated from rotations. Another implication is that the distribution spanned by
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{∂∗i } is not completely integrable in the sense of Frobenius (see Matsushima (1972)), so that
there are no submanifolds to which∂∗i are tangent. If there were such a submanifold, only
vibrational motions would take place on it, and it would be able to be identified with (an
open submanifold of) the internal spaceM. In terms of mechanics, the constraint of the
vanishing total angular momentum (see (2.18)) is equivalent to assigning the distribution
spanned by{∂∗i }, and these facts mean that this constraint is non-holonomic.

3. Equations of motion

In this section, we aim to obtain the equations of motion for multi-particle systems in the
Lagrangian formalism adapted for the bundle structure of the centre-of-mass systemX. To
this end, the Lagrangian formalism in terms of ‘quasi-coordinates’ (see Whittaker (1937))
is of great use. We start with a brief review of the Lagrangian formalism adapted for our
purpose (see also Naimark and Fufaev (1972), and Koiller (1992)). For local expressions
of the equations of motion, it is sufficient for us to work in an open subsetW of R3N−3.
Let ξλ, λ = 1, 2, . . . ,3N − 3, be a local coordinate system inW . Let Xλ andθλ be a local
basis of vector fields and its dual onW , respectively, which are denoted by

Xλ =
∑
µ

B
µ
λ

∂

∂ξµ
θλ =

∑
µ

Aλµ dξµ (3.1)

respectively, with
∑

λ A
µ
λB

λ
ν = δµν . Then, one has after differentiation

dθλ =
∑
σ<κ

γ λσκθ
κ ∧ θσ γ λσκ :=

∑
µ,ν

(
∂Aλµ

∂ξν
− ∂A

λ
ν

∂ξµ

)
Bµσ B

ν
κ . (3.2)

It is clear thatγ λσκ is anti-symmetric inσ andκ.
Let

π̇λ =
∑
µ

Aλµ(ξ)ξ̇
µ. (3.3)

The equations of motion can be described in the Lagrangian formalism, in terms ofπ̇λ and
ξλ. We express the LagrangianL(ξ, ξ̇ ) as

L∗(ξ, π̇) = L(ξ, ξ̇ ). (3.4)

Then the usual Lagrangian equations of motion in terms of(ξ, ξ̇ )

d

dt

(
∂L

∂ξ̇λ

)
− ∂L

∂ξλ
= 0 λ = 1, . . . ,3N − 3 (3.5)

are put in the form

d

dt

(
∂L∗

∂π̇σ

)
−XσL∗ +

∑
µ,κ

γ µσκ
∂L∗

∂π̇µ
π̇κ = 0 σ = 1, . . . ,3N − 3 (3.6)

where Xσ and γ µσκ are the vector fields and the coefficients given in (3.1) and (3.2),
respectively.

We now apply these equations to our multi-particle system in the open subsetπ−1(U) ∼=
U × SO(3) referred to in (2.6). From (2.23), the system of one-forms is given by

θa = ωa θ3+i = dqi a = 1, 2, 3, i = 1, . . . , n = dimM (3.7)

and the dual system of vector fields is written as

Xa = Ja X3+i = ∂∗i a = 1, 2, 3, i = 1, . . . , n = dimM. (3.8)
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Then, equation (2.36) and d(dqi) = 0 provide, when compared with (3.2)

γ abc = −εbca γ a3+i,3+j = −Faij (3.9)

with the otherγ λµν all vanishing. To express the LagrangianL∗, we introduce variableṡπλ

according to (3.3) by

π̇ a = ωat π̇3+i = q̇i (3.10)

whereωat are defined through (2.24) as

ωat := ωa
(

d

dt

)
= 2a

t +
∑
i

βai q̇
i 2a

t = 2a

(
d

dt

)
. (3.11)

Then, from (2.33) together with a potential functionV , one has the Lagrangian

L∗ = 1

2

∑
a,b

Aabω
a
t ω

b
t +

1

2

∑
i,j

aij q̇
i q̇j − V. (3.12)

The application of (3.6) to (3.12) along with (3.9) provides

d

dt

(
∂L∗

∂ωat

)
− JaL∗ −

∑
b,c

εacb
∂L∗

∂ωbt
ωct = 0 (3.13)

d

dt

(
∂L∗

∂q̇i

)
− ∂∗i L∗ −

∑
a

∑
j

F aij
∂L∗

∂ωat
q̇j = 0. (3.14)

Equation(3.13) turns out to be expressed, in vector notation withA = (Aab) andωt = (ωat ),
as

d

dt
(Aωt)− Aωt × ωt + JV − ωt × Aωt = 0 (3.15)

whereJV = ∑
a eaJaV , and we have used the formula (2.31). Since the total angular

momentum is expressed asL = ∑
α mαxα × ẋα = Aωt , as is easily seen from (2.16),

equation (3.15) is put in the form

d

dt
L = −JV. (3.16)

If the potential is rotational invariant, this equation implies conservation of the total angular
momentum. On the other hand, equation (3.14) becomes expressed as

d

dt

(∑
j

aij q̇
j

)
− 1

2

∑
k,j

∂akj

∂qi
q̇kq̇j − 1

2

∑
a,b

∂∗i Aabω
a
t ω

b
t −

∑
j

∑
a,b

F aijAabω
b
t q̇

j + ∂V

∂qi
= 0

(3.17)

which proves to be equivalent to

d2qi

dt2
+
∑
j,k

{
i

j k

}
dqj

dt

dqk

dt
= 1

2

∑
k

∑
a,b

∂∗k Aaba
ikωat ω

b
t

−
∑
j,k

∑
c

AabF
b
jka

ik dqj

dt
ωat −

∑
j

aij
∂V

∂qj
(3.18)

where(aij ) = (aij )−1. Thus we have obtained two systems of equations, (3.16) and (3.18),
which are the equations of motion for the multi-particle system.

In what follows, we assume that the potentialV is rotational invariant, so that the total
angular momentum is conserved. Hence we treatL as a constant vector, and thereby reduce
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the equations of motion (3.18). Equation (3.18) along withL = Aωt can then be put in the
form

d2qi

dt2
+
∑
j,k

{
i

j k

}
dqj

dt

dqk

dt
= −1

2

∑
k

∑
a,b

aik∂∗k A
abLaLb

−
∑
j,k

∑
c

aikLcF
c
jk

dqj

dt
−
∑
j

aij
∂V

∂qj
(3.19)

where use has been made of
∑

b A
abAbc = δac. This equation was also found by Littlejohn

and Reinsch (1996).
What we note about (3.19) is that this equation is not in a closed form, ifL is fixed

during the motion. In fact, the right-hand side contains angular variables, i.e. depends on
SO(3) throughAab andFcij , but the left-hand side of (3.19) is independent ofSO(3). This
implies that we need another equation for angular variables in order to obtain equations
of motion in the closed form. However, we observe that, ifL is constant, the right-hand
side of (3.19) is invariant under the rotation aboutL, i.e. under the action ofh ∈ SO(3)
satisfyinghL = L. This is because∂∗k A

−1 = (∂∗k Aab) is subject to the transformation

(∂∗k A
−1)gx = Adg(∂

∗
k A
−1)x (3.20)

the same transformation asA, and because(F cjk) is subject to (2.39). Here equation (3.20)
is a consequence of the fact that∂∗k is invariant under theSO(3) action,8g∗∂∗k = ∂∗k , the
infinitesimal version of which is [∂∗k , Ja] = 0, the last equation of (2.40). Hence, we need
in reality equations for angular variables which do not keepL invariant. Since the set of
h ∈ SO(3) satisfyinghL = L, L 6= 0, forms a subgroupSO(2), the angular variables we
need lie on the sphereS2 ' SO(3)/SO(2). To find equations onS2, we consider the vector
defined by

3 := g−1L (3.21)

whereg ∈ SO(3) is the angular variable introduced in (2.6). The3 is an analogue to the
body-fixed angular momentum for a rigid body. The magnitude of this vector is, of course,
conserved;||3|| = ||L|| = constant, and hence3 varies in the sphereS2. A calculation
along with

ġg−1 = R(2t) 2t := 2
(

d

dt

)
(3.22)

shows that3 is subject to the equation

d3

dt
= −g−12t ×3. (3.23)

SinceL = Agσ(q)ωt , equation (3.21) is expressed as

3 = Aσ(q)g−1ωt = Aσ(q)
(
g−12t +

∑
i

βi(σ (q))
dqi

dt

)
(3.24)

where

βi(σ (q)) =
∑
a

βai (σ (q))ea. (3.25)

Then, equation (3.23) is rewritten as

d3

dt
= −(A−1

σ(q)3)×3+
∑
i

dqi

dt
(βi(σ (q))×3). (3.26)
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This is the equation for3, depending on internal coordinates.
We note here that3 is a locally-defined variable, so that we need to verify that the

equation for3 is independent of the choice of local sections. According to the local triviality
π−1(V ) ∼= V × SO(3) referred to in (2.7), we have to take

3 = h−1L (3.27)

in place of3. Then, from (2.8),3 and3 are related by

3 = k3. (3.28)

Further, we put

R(2t) = ḣh−1 (3.29)

which corresponds to (3.22). Then, equation (2.8) implies that

R(2t) = R(2t)− g(k−1k̇)g−1. (3.30)

From (3.28)–(3.30) it follows that

d3

dt
= −h−12t ×3 (3.31)

which is the equation that3 is expected to hold from (3.23). As a consequence, one also
obtains

d3

dt
= −(A−1

τ(q)3)×3+
∑
i

dqi

dt
(βi(τ (q))×3). (3.32)

Thus, equation (3.26) turns out to be independent of the choice of local sections. We can
verify (3.32) also by the use of (3.28) and the ‘gauge’ transformation∑

i

R(βi(τ (q))) dqi = dkk−1+
∑
i

R(kβi(σ (q))) dqi (3.33)

which comes from (2.24) along with the local sections,τ andσ , given in (2.8).
We return to equation (3.19). On taking the local sectionσ , equation (3.19) turns out

to be expressed as

d2qi

dt2
+
∑
j,k

{
i

j k

}
dqj

dt

dqk

dt
= −1

2

∑
j

∑
a,b

aij (∂∗j A
ab)σ(q)3a3b

−
∑
j,k

∑
c

aik3cF
c
jk(σ (q))

dqj

dt
−
∑
j

aij
∂V

∂qj
. (3.34)

We have to verify that the right-hand side of (3.34) is independent of the choice of local
sections as well. The quantity(∂∗j A

−1)σ(q) = (∂∗j Aab)σ(q) in the first term of the right-hand
side of (3.34) turns out to be put in the form

(∂∗j A
−1)σ(q) =

∂A−1
σ(q)

∂qj
− [R(βj (σ (q))), A

−1
σ(q)] (3.35)

which can be verified by using (2.27) and

Ja(A
−1) = [R(ea), A

−1] (3.36)

a consequence of (2.31). For the local sectionsτ and σ , the right-hand side of (3.35)
transforms according to

∂A−1
τ(q)

∂qj
− [R(βj (τ (q))), A

−1
τ(q)] = Adk(q)

(
∂A−1

σ(q)

∂qj
− [R(βj (σ (q))), A

−1
σ(q)]

)
(3.37)
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which can be proved by the use ofA−1
τ = kA−1

σ k
−1 and (3.33). Thus one has

(∂∗j A
−1)τ(q) = Adk(q)(∂

∗
j A
−1)σ(q). (3.38)

In the same manner, the curvatureFcij can be shown to transform according to

Fij (τ (q)) = k(q)Fij (σ (q)) Fij =
∑
a

F aij ea. (3.39)

In fact, from (2.36) along with the local sectionτ , we observe that

dR

(∑
i

βi(τ (q)) dqi
)
− R

(∑
i

βi(τ (q)) dqi
)
∧ R

(∑
j

βj (τ (q)) dqj
)

=
∑
i<j

R(Fij (τ (q))) dqi ∧ dqj (3.40)

the left-hand side of which can be verified, on account of (3.33), to be subject to the
transformation

dR

(∑
i

βi(τ (q)) dqi
)
− R

(∑
i

βi(τ (q)) dqi
)
∧ R

(∑
j

βj (τ (q)) dqj
)

= Adk(q)

(
dR

(∑
i

βi(σ (q)) dqi
)
− R

(∑
i

βi(σ (q)) dqi
)

∧R
(∑

j

βj (σ (q)) dqj
))

(3.41)

and hence (3.39) follows. From (3.38) and (3.39) it follows that the right-hand side of
(3.34) is indeed independent of the choice of local sections.

On account of (3.35), the first and the third terms of the right-hand side of (3.34) are
put together to be written as

−
∑
k

aij
∂

∂qj

(
1

2

∑
a,b

Aabσ(q)3a3b + V
)
+
∑
k

aij ((A−1
σ(q)3)×3|βj (σ (q))). (3.42)

Thus equation (3.34) becomes expressed as

d2qi

dt2
+
∑
j,k

{
i

j k

}
dqj

dt

dqk

dt
= −

∑
j

aij
∂

∂qj

(
1

2

∑
a,b

Aabσ(q)3a3b + V
)

+
∑
j

aij ((A−1
σ(q)3)×3|βj (σ (q)))

−
∑
j,k

∑
c

aik3cF
c
jk(σ (q))

dqj

dt
. (3.43)

The reduced equations of motion then consist of (3.26) and (3.43). These are reminiscent of
Wong’s equations (1970), if the terms appearing in (3.42) are dropped from the right-hand
side of (3.43). See also Montgomery (1990, 1991) for Wong’s equation. In the case of
3 = 0, equation (3.43) reduces to the usual Newton’s equations of motion on the internal
space, and equation (3.26) vanishes. We will derive Wong’s equations for an optimal control
problem of the multi-particle system in the next section.
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4. A control problem

We consider the control problem of moving the multi-particle system under the condition
of the vanishing total angular momentum. Since a vector field is vibrational if and only if
the total angular momentum vanishes (see (2.18)), the equation the system must satisfy can
be written as

dx

dt
=
∑
i

ui∂∗i x x ∈ Ẋ (4.1)

where ∂∗i are the basis of vibrational vector fields given in (2.27), andui are controls,
functions oft . Since dx =∑a ω

aJax +
∑

i dqi∂∗i x, equation (4.1) is equivalent to

dqi

dt
= ui ωat = 0 (4.2)

where ωat is given by (3.11). If we are given a curveq(t) in M, equation (4.1)
with ui = dqi/dt determines a horizontal (or vibrational) curvex(t) in Ẋ such that
π(x(t)) = q(t). On account of (2.24) and (2.25), the second equation of (4.2) is expressed
as

dg

dt
g−1+

∑
i

R(βi(gσ (q)))
dqi

dt
= 0 βi = (βai ) (4.3)

which is put, by the use of (2.15) and (2.28), in the form

dg

dt
= −g

∑
i

R(βi(σ (q)))
dqi

dt
. (4.4)

Thus (4.2) turns out to be expressed as

dqi

dt
= ui dg

dt
= −g

∑
i

R(βi(σ (q)))u
i. (4.5)

To define an optimal control problem associated with (4.5), we have to provide a
performance index. Since we are to consider horizontal paths subject to (4.5), we assume
that Ẋ is endowed only with a ‘horizontal metric’, which comes from (2.33) to be defined
as

ds2
0 =

∑
i,j

aij dqi dqj . (4.6)

To be strict, to use the word ‘metric’ for ds2
0 is not adequate, since ds2

0 is degenerate as
a quadratic form. However, we call ds2

0 the horizontal metric for convenience. Now a
performance index is defined to be

1

2

∫ T

0
〈u(t), u(t)〉x(t) dt (4.7)

where〈 , 〉 andu(t) =∑i u
i(t)∂∗i denote the horizontal metric (4.6) and a horizontal tangent

vector tox(t). Our optimal control problem is now set up as a problem of determining
controlsui(t) in such a way that the performance index (4.7) is minimized among all the
controls which steer the statex(t) from an initial statex0 to a final statex1 in time T . It
should be noted here thatx0 andx1 are chosen so that they may be joined by a horizontal
curve, in order that our problem is well set up. However, in our case, any pair of points of
Ẋ can be joined by a horizontal curve, as was shown by Guichardet (1984).
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In order to apply the Maximum Principle, we consider the control problem on the
cotangent bundleT ∗Ẋ. Let θ be the canonical one-form onT ∗Ẋ, which is defined, as
usual, to be

θ =
N∑
α=1

(pα|dxα) (x, p) ∈ T ∗Ẋ x = (xα), p = (pα). (4.8)

According to the local triviality (2.6), theθ is expressed as

θ =
∑
a

γa4
a +

∑
i

pi dqi (4.9)

where we have set

γ =
N∑
α=1

σα(q)× g−1pα =
∑
a

γaea (4.10)

pi =
N∑
α=1

(
g−1pα

∣∣∣∣∂σα∂qi

)
(4.11)

g−1 dg =
3∑
a=1

4aR(ea). (4.12)

The momentum variables associated with∂∗i are then defined and expressed as

Pi := θ(∂∗i ) = pi −
3∑
c=1

βci (σ (q))γc. (4.13)

In terms ofPi , the canonical one-formθ is put in the form

θ =
∑
a

L′aω
a +

∑
i

Pi dqi (4.14)

where

L′a =
∑
b

gabγb (4.15)

the components of the total ‘angular momentum’

L′ =
N∑
α=1

xα × pα = g
N∑
α=1

σα(q)× g−1pα = gγ. (4.16)

The total angular momentumL′ is not related to the mechanical total angular momentum

L =
N∑
α=1

mαxα × ẋα. (4.17)

If

mαẋα = pα α = 1, . . . , N (4.18)

then we would obtainL = L′. We should note here that the relation (4.18) provides the
isomorphism ofT Ẋ to T ∗Ẋ through the metric ds2 = ∑α mα(dxα|dxα). However, ds2 is
not required to be endowed witḣX in our control problem. Only the horizontal metric (4.6)
is needed to set up our control problem, so that (4.18) has no reason to hold, and therefore
L′ is not related toL.
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Now that we have set up the phase space(T ∗Ẋ, dθ), the Maximum Principle tells us
that an optimal controlu = (ui) is to be determined so that the Hamiltonian

H =
∑
i

Piu
i − 1

2
〈u, u〉 (4.19)

may be maximized, whereu is looked upon as a vibrational vector,u = ∑i u
i∂∗i . In the

case of normal extremals, we find that an optimal control is given byui =∑j a
ijPj . The

Hamiltonian (4.19) then takes the form

H = 1

2

∑
i,j

aijPiPj . (4.20)

Thus we obtain the Hamiltonian system(T ∗Ẋ, dθ,H) arising from the optimal control
problem for the multi-particle system, which is manifestlySO(3)-invariant. The equations
of motion are obtained from the Hamiltonian vector fieldXH determined byι(XH ) dθ =
−dH . By using (4.9) and (4.20), we obtain the equations

dqi

dt
= ∂H

∂pi

dpi
dt
= −∂H

∂qi

4at =
∂H

∂γa

dγa
dt
=
∑
b,c

εcbaγ
c ∂H

∂γb
(4.21)

where4at = 4a(d/dt). Written out, these equations become

dqi

dt
=
∑
j

aijPj

dpi
dt
=
∑
k,j

∑
c

akj
∂βck (σ (q))

∂qi
Pjγc − 1

2

∑
k,j

∂akj

∂qi
PkPj

4at = −
∑
i,j

aijPiβ
a
j (σ (q))

dγa
dt
= −

∑
b,c

∑
i

εabcγca
ijPiβ

b
j (σ (q)) (4.22)

wherePi are the momentum variables defined in (4.13). Three of these equations are put
together to be rewritten as

d2qi

dt2
+
∑
j,k

{
i

j k

}
dqj

dt

dqk

dt
=
∑
j,k

∑
c

F cjk(σ (q))a
ij dqk

dt
γc

dγ

dt
= −γ ×

∑
i

βi(σ (q))
dqi

dt
. (4.23)

Since theγ is a locally-defined variable, we have to verify that these equations are
independent of the choice of local sections. If we take the local sectionτ given in (2.7),γ
should be replaced by

γ = h−1L′ (4.24)

which corresponds to (4.16). Then equation (2.8) gives rise to

γ = kγ. (4.25)
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Equations (3.39) and (4.25) show that the right-hand side of the first equation of (4.23) is
independent of the choice of local sections. As for the second equation of (4.23), one can
verify that

dγ

dt
= −γ ×

∑
i

βi(τ (q))
dqi

dt
(4.26)

on account of (3.33) and (4.25). Thus we observe that the equations of motion (4.23) are
independent of the choice of local sections.

Equations (4.23) are the Wong equations describing the motion of a classical particle in
the Yang–Mill fieldFcjk, to which Montgomery (1990, 1991) has already referred, without
explicit calculation. The remaining equation containing4at in (4.22) is concerned with the
rotational variables, and turns out to be expressed, on account of (4.12), as

dg

dt
= −g

∑
j,k

R(βj (σ (q))a
jkPk (4.27)

which is equation (4.5) withui = ∑k a
ikPk and can be integrated after equation (4.23) is

solved. Equation (4.27) can be put in the form

g−1 dg

dt
+
∑
j

R(βj (σ (q))
dqj

dt
= 0 (4.28)

which is equivalent, under (2.6), to

L =
N∑
α=1

mαxα × dxα
dt
= 0. (4.29)

Further, the angular momentumL′ is shown to be conserved on account of (4.23). However,
it depends on the initial condition whetherL′ vanishes or not. This does not contradict (4.29),
sinceL andL′ need not be equal.

Equations (4.23) are considered as reduced equations by theSO(3)-symmetry from the
Hamilton equations onT ∗Ẋ, and looked upon as defined onT ∗Ẋ/SO(3) ∼= T Ẋ/SO(3) ∼=
T (M)⊕Ad(Ẋ) with Ad(Ẋ) := Ẋ×SO(3)G andG = so(3). It is of great interest to compare
equation (4.23) with the reduced equations of motion, (3.26) and (3.43), for the mechanical
system. If we could setA = 0 and replaceγ for 3 in equations (3.26) and (3.43), we
would obtain the Wong equations (4.23). This comparison of equations would allow for the
interpretation that the choice of velocities as control variables implies conversely that the
control system is assumed to have vanishingly small inertia. However, we note thatγ and
3 are comparable, but not equal.

5. Remarks

We have applied the Lagrangian equations (3.6), of motion to the Lagrangian system for
the multi-particle system. We remark, in conclusion, that equation (3.6) is also applicable
to Lagrangian systems on the tangent bundle of any principal fibre bundle. LetX be a
principal fibre bundle with structure groupG acting onX to the left. We take the local
triviality of this bundle asπ−1(U) ∼= U×G with local coordinates(q, g), which is similar to
(2.6). We assume that a connectionω is defined onX, which satisfies a similar equation to
(2.19) and is subject to the same transformation as (2.20) withg ∈ G. Then the components
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ωa, a = 1, . . . , r = dimG, take the same expression as (2.24),G being the Lie algebra of
G. Let Ccab be the structure constants ofG along with the structure equation

[Ea,Eb] =
r∑
c=1

CcabEc (5.1)

for a basisEa, a = 1, . . . , r. Then, in our present case, equation (2.36) is put in the form

dωc =
∑
a<b

Ccabω
a ∧ ωb +

∑
i<j

F cij dqi ∧ dqj (5.2)

whereFcij are the components of the curvature defined to be

Fcij =
∂βcj

∂qi
− ∂β

c
i

∂qj
−

r∑
a,b=1

Ccabβ
a
i β

b
j . (5.3)

We notice here that, while in Koiller (1992) the functionsβaj are treated as independent of
g ∈ G, in our case they depend ong.

On the above setting, we take a basis of the space of one-forms onπ−1(U) as

θa = ωa θ3+i = dqi a = 1, . . . , r = dimG, i = 1, . . . , n = dimM (5.4)

and the dual basis as

Xa = Ja Xr+i = ∂∗i a = 1, . . . , r = dimG, i = 1, . . . , n = dimM (5.5)

where

Ja = d

dt
exp(tEa)x|t=0 ∂∗j =

∂

∂qj
−

r∑
a=1

βaj Ja (5.6)

are the infinitesimal transformation of exp(tEa) and the horizontal lift of∂/∂qj , respectively.
Then, like (3.9), one has

γ abc = −Cabc γ ar+i,r+j = −Faij (5.7)

with the other coefficientsγ λµν vanishing. Hence, the Lagrangian equations (3.13) and (3.14)
for a certain LagrangianL∗ take the form

d

dt

(
∂L∗

∂ωat

)
− JaL∗ −

∑
b,c

Cbac
∂L∗

∂ωbt
ωct = 0 (5.8)

d

dt

(
∂L∗

∂q̇i

)
− ∂∗i L∗ −

∑
a

∑
j

F aij
∂L∗

∂ωat
q̇j = 0 (5.9)

respectively, whereωat are defined in the same manner as the previous one. Though
our system is not a non-holonomic Lagrangian system, our Lagrangian formulation has
a resemblance to that of a non-holonomic system. See de León and de Diego (1996) and
references therein for a treatment of non-holonomic Lagrangian systems.

The Hamiltonian formalism runs as follows: letT ∗X be the cotangent bundle ofX
endowed with the canonical one-formθ . We determine the momentum variablesπa andPi
in a manner such thatθ is expressed as

θ =
∑
a

πaω
a +

∑
i

Pi dqi (5.10)
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whereωa are the components of the connection form. The canonical symplectic form dθ

then takes the form

dθ =
∑
a

dπa ∧ ωa +
∑
i

dPi ∧ dqi +
∑
a

∑
b<c

πaC
a
bcω

b ∧ ωc +
∑
a

∑
i<j

πaF
a
ij dqi ∧ dqj

(5.11)

where use has been made of (5.2). When given a Hamiltonian functionH ∗, the associated
Hamiltonian vector fieldXH ∗ is defined, as usual, throughι(XH ∗) dθ = −dH ∗, and turns
out to take the form

XH ∗ =
∑
a

∂H ∗

∂πa
Ja −

∑
a

(∑
b,c

Ccbaπc
∂H ∗

∂πb
+ Ja(H ∗)

)
∂

∂πa

+
∑
i

∂H ∗

∂Pi
∂∗j −

∑
j

(∑
a

∑
i

πaF
a
ij

∂H ∗

∂Pi
+ ∂∗j H ∗

)
∂

∂Pj
. (5.12)

The Hamiltonian equations of motion are then expressed as

ωat =
∂H ∗

∂πa

dπa
dt
= −

∑
b,c

Ccabπc
∂H ∗

∂πb
− Ja(H ∗)

dqi

dt
= ∂H ∗

∂Pi
dPj
dt
= −

∑
a

∑
i

πaF
a
ij

∂H ∗

∂Pi
− ∂∗j H ∗. (5.13)

To look into the right-hand side of the second equation of (5.13), we note that the lift,J̃a, of
the infinitesimal transformationJa is defined to be an infinitesimal transformation satisfying

LJ̃a θ = 0 pr∗J̃a = Ja (5.14)

where pr is the projectionT ∗X→ X, and pr∗ is its differential. From the formula

LJaωb =
∑
c

Cbacω
c (5.15)

which is a consequence of (5.1) and (2.20) withg ∈ G, it turns out that

J̃a = Ja +
∑
b,c

Ccbaπc
∂

∂πb
. (5.16)

Therefore, the second equation of (5.13) is expressed as dπa/dt = −J̃a(H ∗), so that if
the HamiltonianH ∗ is invariant under the lifted action ofG on T ∗X, J̃a(H ∗) = 0, then
πa are conserved. This fact is a generalization of the conservation of the total angular
momentum. In fact, forG = SO(3), one hasωa = 2a +∑i β

a
i dqi with 2a =∑b gab4

b,
so a comparison of (4.14) with (5.10) shows thatπa = L′a together withπa =

∑
b gabγb.

In particular, forH ∗ = 1/2
∑

i,j a
ijPiPj , we obtain from (5.13) the equations of motion

equivalent to (4.22).
It is to be noted that if starting with the LagrangianL∗ = 1/2

∑
i,j aij q̇

i q̇j (to be
compared with (3.12)), we can definePi = ∂L∗/∂q̇i , but cannot use∂L∗/∂ωat to define
conjugate momenta, since∂L∗/∂ωat = 0. In this case, however, the Maximum Principle
can provide the HamiltonianH ∗ in the formH ∗ = 1/2

∑
i,j a

ijPiPj (see (4.20)).
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